
Privacy-preserving Scanpath Comparison for Pervasive Eye
Tracking

SULEYMAN OZDEL, Technical University of Munich, Germany

EFE BOZKIR, Technical University of Munich, Germany and University of Tübingen, Germany

ENKELEJDA KASNECI, Technical University of Munich, Germany

As eye tracking becomes pervasive with screen-based devices and head-mounted displays, privacy concerns

regarding eye-tracking data have escalated. While state-of-the-art approaches for privacy-preserving eye

tracking mostly involve differential privacy and empirical data manipulations, previous research has not

focused on methods for scanpaths. We introduce a novel privacy-preserving scanpath comparison protocol

designed for thewidely usedNeedleman-Wunsch algorithm, a generalized version of the edit distance algorithm.

Particularly, by incorporating the Paillier homomorphic encryption scheme, our protocol ensures that no

private information is revealed. Furthermore, we introduce a random processing strategy and a multi-layered

masking method to obfuscate the values while preserving the original order of encrypted editing operation

costs. This minimizes communication overhead, requiring a single communication round for each iteration of

the Needleman-Wunsch process. We demonstrate the efficiency and applicability of our protocol on three

publicly available datasets with comprehensive computational performance analyses and make our source

code publicly accessible.
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1 INTRODUCTION
In the rapidly evolving landscape of interactive technologies, eye tracking has been integrated into

various devices, ranging from traditional stationary equipment to virtual reality (VR) headsets and

smart glasses. This integration strives to refine intelligent user interfaces and yields insights into

user visual behavior. Scanpaths, the sequential representations of eye movements, are utilized for

gaze pattern analyses, providing a wealth of information about personal characteristics, such as

skills expertise [16], health status [5, 27, 36], decision making behaviors [69], sexual preferences [44],

and race [8], to count a few. Such personal characteristics often include sensitive data, leading to

the need for privacy considerations when handling scanpath data [13, 47].
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To encode scanpath data, different representations were employed [2, 28], ranging from the direct

numerical coordinates to saliency maps [10] and string sequences [51]. Among these, string-based

representations are widely used and to assess similarities in string-encoded scanpaths, alignment

techniques, particularly the edit distance (i.e., Levenshtein distance), are utilized [2, 14, 40, 64]. In this

context, the Needleman-Wunsch algorithm [50] is recognized for its extensive use in comparative

analyses [2, 14, 19].

Given the extensive use of sensitive eye-tracking data across various fields, as previously out-

lined, developing robust, privacy-preserving string alignment algorithms designed for scanpath

comparison is essential. Secure computation methods for string sequence alignment, prevalent in

genomics [7, 56, 62], are not commonly applied to eye-tracking data. These methods, often involving

a third-party intermediary, are primarily optimized for DNA query search rather than obtaining an

exact similarity score [3, 7, 41, 62]. Furthermore, although there are secure protocols designed to

obtain exact similarity scores, some rely on computationally intensive fully homomorphic encryp-

tion schemes [18]. In contrast, others necessitate significant communication overhead between

involved parties and use various protocols depending on the substitution cost definitions [4, 56].

The existing literature indicates a significant gap in developing computationally efficient and

practical secure two-party string alignment protocols, specifically in the context of scanpaths.

Creating these protocols is crucial for the secure and private analysis of eye-tracking data, a need that

is becoming more pronounced with the increasing use of eye-tracking devices. We introduce a novel

two-party secure string alignment protocol to bridge this gap, specifically for scanpath comparisons.

This protocol is intricately designed for the Needleman-Wunsch algorithm and also offers the

flexibility to be utilized for other edit distance algorithms, thereby expanding its applicability to

DNA sequence analysis. Our protocol supports various substitution cost definitions and minimizes

inter-party communication. Furthermore, it utilizes the Paillier additive homomorphic encryption

scheme, chosen for its relatively lower computational demands compared to fully homomorphic

encryption schemes, to enable secure computations. In summary, our work introduces a novel

approach to enhance privacy and efficiency in scanpath comparisons, with the following five main

contributions:

• We introduce the first-ever method dedicated to securing privacy in the comparison of

scanpaths, signifying a pioneering advancement in eye tracking.

• We propose an efficient two-party computation (2PC) protocol for scanpath comparison

requiring only a single round of communication between parties and is applicable to the edit

distance kind string alignment algorithms.

• We introduce a novel probabilistic matrix processing strategy for the Needleman-Wunsch

algorithm that conceals the computation of specific cells from another party to enhance

security.

• We introduce a masking technique incorporating order-preserving masking by exploiting

the Paillier cryptosystem’s properties to ensure the privacy of minimum cost computation in

the Needleman-Wunsch algorithm.

• We show the practical applicability and effectiveness of our method by evaluating it on three

publicly available eye-tracking datasets and make our source code publicly accessible for

reproducibility and transparency.

2 RELATEDWORK
We discuss the previous research in two lines of work, namely, privacy-preserving eye tracking in

Section 2.1 and privacy-preserving string comparison in Section 2.2, as our work focuses on strings

for scanpath comparison.
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2.1 Privacy-preserving Eye Tracking
Eye gaze and pupillometry provide beneficial information in various applications, especially for

visual interaction, as incorporating eye-tracking data can facilitate hands-free interaction. However,

it is known that the same data combined with the presented visual stimulus can reveal sensitive

information about humans [43, 47]. To count a few, previous work found that eye-tracking data is re-

lated to sexual preference [63], body mass index [34], health status [65], and personal identifiers [11]

when relevant stimulus is encountered. Considering these, the importance of privacy protection for

eye-tracking data has constantly been emphasized in the context of visual analytics [58], security

applications [42], virtual reality [13], and pervasive computing [35]. Yet few works indeed proposed

technical approaches to protect privacy.

Differential privacy, a privacy protection method that focuses on the privacy risk of an individual

participating in a database, has recently been utilized on different forms of eye-tracking data.

For instance, Liu et al. [48] utilized the Gaussian mechanism of differential privacy on heatmaps

whereas Steil et al. [60] applied its exponential mechanism to aggregated eye movement features

to protect privacy. However, standard differential privacy mechanisms are vulnerable to the cor-

relations in the data. To address this issue, Bozkir et al. [11] took temporal correlations in eye

movements into account and utilized differential privacy by decorrelating the data in the frequency

domain.With a similar aim, Li et al. [46] provided privacy protection to eye-tracking data by

considering spatio-temporal attacks on gaze data streams with a method that utilizes differential

privacy. However, differential privacy achieves privacy protection by adding a significant amount of

randomly generated noise, and such noise often leads to a certain amount of performance reduction

in utility tasks; therefore, achieving an optimal privacy-utility trade-off is usually challenging. In

addition, standard mechanisms of differential privacy are vulnerable to correlations in the data, and

as eye-tracking data is highly correlated, particularly in the temporal direction, which is another

challenge to address when differential privacy mechanisms are utilized for privacy protection.

Previous work also focused on other notions of privacy for eye-tracking data, such as k-anonymity

and plausible deniability together with differential privacy [22, 23] and found that while plausi-

ble deniability and differential privacy provide practical privacy-utility trade-offs, k-anonymity

performs the best at gaze prediction utility task.

Due to the aforementioned challenges, other research focused on more practical approaches to

address privacy issues in pervasive eye tracking. For instance, David-John et al. [24] proposed spatial

and temporal downsampling in the eye-tracking data and showed that person re-identification

rates drop significantly when their method is applied, while utility tasks work with reasonable

performance. Similarly, Fuhl et al. [31] utilized a reinforcement learning-based approach by treating

subject and gender information as protected while document-type and expertise classification

tasks as utility tasks. The authors showed that their approach outperforms differential privacy-

and generative adversarial network-based solutions for protecting privacy yet providing privacy

protection probabilistically. Elfares et al. [26] focused on federated learning for gaze estimation in the

wild and showed that their approach outperforms vanilla federated learning in this task. Yet, most

of these works either add a significant amount of noise in the data or work probabilistically, which

is questionable from a regulation point of view. To this end, Bozkir et al. [12] utilized a randomized

encoding-based framework to provide formal privacy guarantees for the gaze estimation task,

where two-input parties provide their data to train a gaze estimation model on a cloud without

revealing their sensitive eye movement data. As it is possible to utilize such formal guarantees

potentially in an efficient way, as indicated by previous work, we also argue for formal methods to

protect privacy in the scanpath comparison task.
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2.2 Privacy-preserving String Alignment Algorithms
String alignment algorithms are essential for analyzing similarities in both scanpaths and DNA

sequences. Due to the sensitive nature of this information, the development of privacy-preserving

string alignment algorithms is essential in this context. There are several works [3, 7, 41, 57, 68] that

mainly focus onDNAquery search, often utilizing private protocols for edit distance approximations.

In contrast to the aforementioned works focusing on query search, Jha et al. [39] utilized Yao’s

garbled circuits [66] for private edit distance computation between two parties and additionally

proposed an alternative protocol to compute Smith-Waterman score [59]. Zhu and Huang [70] also

employed Garbled Circuits for private computation of edit distance, addressing both semi-honest

and malicious adversary models. Ayday et al. [6] introduces a framework utilizing a modified

Paillier cryptosystem for the secure storage and processing of patient genomic data, allowing

medical centers to process genome data privately.

Moreover, several methods [4, 18, 56] leverage homomorphic encryption to enhance privacy. Atal-

lah et al. [4] introduced a technique to determine sequence similarity through a two-party secure

computation protocol. Their approach harnesses homomorphic encryption, storing the alignment

matrix under additive sharing between the two parties. A key aspect of this approach is the

minimum-finding protocol, which requires two communication rounds between parties and is used

three times per cell computation, increasing the communication overhead. Similarly, Rane and

Sun [56] proposed an asymmetric two-party computation protocol tailored for server-client interac-

tions, which also leverages additive secret sharing and homomorphic encryption. Madrigal et al. [49]

proposed an algorithm based on secret sharing for DNA comparison, leveraging theWagner-Fischer

edit distance to achieve reduced execution times in comparison tasks under both passive and active

security scenarios. Yoshimoto et al. [67] proposed a homomorphic encryption-based two-party

secure computation protocol for the modified edit distance with moves algorithm aimed at reducing

the round complexity. Cheon et al. [18] presented an approach for the private computation of edit

distance employing somewhat homomorphic encryption. Their framework, which employs specific

circuits for equality, comparison, and addition, leverages a third party, typically a cloud server, to

perform computations on encrypted data, thereby ensuring data confidentiality.

Existing string alignment methods are mainly developed for genome analysis, typically dealing

with a small alphabet of four letters. Most of them [3, 7, 41, 57, 68] are developed for query search,

using approximations and often include a third party in their protocols. Methods applicable for

two-party computation are not computationally efficient [18] and usually necessitate frequent

communication between parties and utilize different protocols tailored to different substitution

costs [4, 56]. Thus, a research gap remains in achieving an efficient two-party secure string alignment

computation that balances computation time and communication load. To address this gap, our

protocol is designed to accommodate a range of substitution costs and to calculate the Needleman-

Wunsch algorithm, which is a generalized version of edit distance. Its primary benefit lies in its

efficiency, requiring only a single round of communication between parties per iteration, thereby

significantly simplifying the process, and it supports scanpath comparisons based on eye movement

data, which is highly missing in the eye-tracking literature.

3 METHODS
To provide privacy-preserving scanpath comparisons, we present a novel secure two-party computa-

tion protocol to privately compute the Needleman-Wunsch algorithm between two parties without

the involvement of a third-party entity, such as a cloud instance. Utilizing the Paillier homomor-

phic encryption scheme, which offers the necessary properties such as ciphertext addition, scalar
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multiplication, and probabilistic encryption, our approach executes the Needleman-Wunsch algo-

rithm within the encrypted domain. Our method ensures that no information about the individual

scanpaths is disclosed except for their lengths and the final similarity value.

3.1 Preliminaries
Before diving into the specifics of our methodology, we provide a concise overview of the foun-

dational concepts that anchor our protocol. Two critical components form the backbone of our

method: the Needleman-Wunsch algorithm and the Paillier homomorphic encryption scheme. The

Needleman-Wunsch algorithm is one of the fundamental methods to compare and derive similarity

scores for two scanpaths. On the other hand, the Paillier homomorphic encryption scheme offers

unique cryptographic properties that permit mathematical operations in the encrypted domain.

This section introduces these core concepts to furnish the reader with the requisite background

knowledge.

3.1.1 Needleman-Wunsch Algorithm. The Needleman-Wunsch algorithm [50] stands as a general-

ized version of the Edit distance algorithm, also known as Levenshtein distance [45]. Its primary

objective is to determine the best global alignment between two sequences, achieving either maxi-

mum similarity or minimum dissimilarity. To achieve this, the algorithm uses a scoring system that

considers matches, mismatches, insertions, and deletions as part of its calculation.

The Needleman-Wunsch algorithm was first introduced for comparing DNA or protein se-

quences [50], and it found its application in eye tracking to align scanpaths, enabling the com-

parative analysis of eye movement patterns [17, 19]. The final alignment score generated by the

Needleman-Wunsch algorithm serves as a crucial metric for assessing the similarity of sequences or

gaze data. This alignment score helps identify shared or distinct aspects of visual attention among

individuals or in response to different stimuli [15, 17, 19, 25].

Let 𝑀 be defined as an alignment matrix with dimensions 𝑚 × 𝑛, which represents the cost

associated with aligning two sequences up to the 𝑖𝑡ℎ and 𝑗𝑡ℎ positions, respectively. The matrix𝑀

is initialized as follows:

𝑀 (0, 0) = 0, 𝑀 (𝑖, 0) = 𝑖 × 𝑐𝑑𝑒𝑙 for 1 ≤ 𝑖 ≤ 𝑚, 𝑀 (0, 𝑗) = 𝑗 × 𝑐𝑖𝑛𝑠 for 1 ≤ 𝑗 ≤ 𝑛,

where 𝑐𝑑𝑒𝑙 and 𝑐𝑖𝑛𝑠 represent the costs of deletion and insertion, respectively. For other values

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛,𝑀 is defined as:

𝑀 (𝑖, 𝑗) = min

{
𝑀 (𝑖 − 1, 𝑗 − 1) + 𝑆 (𝜆𝑖 , 𝜇 𝑗 ), 𝑀 (𝑖 − 1, 𝑗) + 𝑐𝑑𝑒𝑙 , 𝑀 (𝑖, 𝑗 − 1) + 𝑐𝑖𝑛𝑠

}
,

with 𝑆 (𝜆𝑖 , 𝜇 𝑗 ) denoting the substitution cost between the letters 𝜆𝑖 and 𝜇 𝑗 .

In the alignment matrix𝑀 , for the computation of𝑀 (𝑖, 𝑗), it is needed to have the three previous
entries: 𝑀 (𝑖 − 1, 𝑗 − 1), 𝑀 (𝑖 − 1, 𝑗), and 𝑀 (𝑖, 𝑗 − 1). As long as these entries are available, there

is no strict requirement to follow a specific order, even though many dynamic programming

algorithms traditionally proceed in a row-by-row or column-by-column fashion. Once the dynamic

programming is done and all cells in the matrix are filled, the entry 𝑀 (𝑚,𝑛) gives us the final
alignment used as a similarity metric. The overall time complexity of this algorithm is therefore

O(𝑚𝑛). The pseudocode of this algorithm is given in the Appendix C.

3.1.2 Paillier Cryptosystem. Paillier encryption scheme is a semantically secure asymmetric ho-

momorphic encryption scheme that enables data sharing and processing without revealing the

underlying content. Semantically secure algorithms maintain their security even when an adver-

sary can access pairs of messages (i.e., plaintexts) and their associated encrypted messages (i.e.,

ciphertexts). Asymmetric encryption systems work with a dual-key setup: the public key facilitates

encryption and homomorphic operations, while the private key is essential for decryption. This
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arrangement allows a third party to compute operations on the encrypted data using only the

public key. The key generation protocol in the Paillier cryptosystem accepts a security parameter

that specifies the number of bits for the prime numbers used in the key creation. A larger bit length

results in more secure keys by increasing the difficulty of potential cryptographic attacks, but it

also raises the computational requirements.

The Paillier encryption scheme uses probabilistic encryption, which ensures that a given plaintext

maps to many possible ciphertexts, providing a high level of security by making it computationally

infeasible for an attacker to deduce the plaintext from the ciphertext, even when the same plaintext

is encrypted multiple times. Additionally, it exhibits homomorphic properties that allow certain

operations on ciphertexts, such as the addition of ciphertexts, which corresponds to the addition

of their plaintexts, and the multiplication of ciphertext by an unencrypted scalar, equating to the

multiplication of the plaintext by that scalar. Subtraction can be performed using the additive

inverse in the encrypted domain. While direct division is not supported, division by a plaintext

scalar can be achieved by multiplying with its multiplicative inverse. Further details are given in

Appendix D.

For our proposed protocol, the encryption mechanism must accommodate distinct operations,

namely, adding ciphertexts and multiplication either with a scalar value (i.e., an unencrypted

number) or with ciphertexts. Additionally, probabilistic encryption, which yields varied ciphertexts

for a single plaintext, is a key feature for privately computing the Needleman-Wunsch algorithm.

Although fully homomorphic encryption (FHE) schemes also support these operations, they require

significant computational demands and larger ciphertexts for the same security level, leading

to increased bandwidth consumption. Consequently, considering these, we selected the Paillier

cryptographic system [52], which inherently has the required capabilities.

3.2 Framework
In this section, we discuss our framework for privacy-preserving scanpath comparison. In our

framework, there are two primary actors, namely Alice and Bob, who might be individuals or

patients looking to compare their scanpaths. Alice takes on the key holder role, possessing both

the secret and public key pairs generated using the Paillier cryptosystem. In contrast, Bob acquires

the public key and uses it to run the Needleman-Wunsch algorithm on the encrypted domain.

Threat Model. In our proposed model, we engage with two parties aiming to compare scanpaths.

This interaction operates under the assumption of a “semi-honest” behavior from both entities.

The semi-honest model, often called the “honest-but-curious” model, describes participants in

cryptographic schemes who strictly follow the given protocol. They do not deviate from the

provided steps or change the process. However, they are naturally curious. While they stick to the

rules, they try to learn any extra information from the eye-tracking data they observe during the

protocol’s operation. In simple terms, these participants act as instructed but are always keen to

gather sensitive information from others’ eye-tracking data without actively interfering.

Masking Process for Minimum Cost Computation. Before the descriptions of our scanpath com-

parison protocol, we first introduce the masking process required in each iteration. To execute the

Needleman-Wunsch algorithm, finding the minimum among the sequence of editing operation

costs (insertions, deletions, or substitutions) in each iteration is essential. However, Bob performs

computations on encrypted data, and all these costs are encrypted. As ciphertexts do not reveal any

information about their corresponding plaintexts, it is impossible to determine the minimum of

these encrypted values without involving the owner of the secret key. Therefore, we must interact

with Alice, the owner of the private key, to compute the minimum by decrypting these values.

Alice could discern each value if she knew the current step and the vector. To address this issue,
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the given vector is masked and subsequently permuted to obscure the information from Alice.

Initially, an order-preserving masking is applied, followed by an affine transformation, and finally,

the values are permuted.

We propose an order-preserving masking approach that preserves the original sequence’s order,

enabling the retrieval of initial values through a uniform method applicable across various variables.

Initially, we have the vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑚]. This mechanism operates as follows. For each

element 𝑥𝑖 in the vector x, the updated value 𝑥 ′𝑖 is computed using the formula:

𝑥 ′𝑖 = (𝑥𝑖 · 𝜌1) −
𝑚∑︁
𝑗=1
𝑗≠𝑖

𝑥 𝑗 , (1)

where 𝜌1 +1 has a multiplicative inverse in modular 𝑛 and 𝜌1 > 0. The proof is given in Appendix E.

To obscure the data from Alice, Bob applies this masking with a probability specified in Step 2.
However, the retrieval of the original value is also essential. The inverse function is achieved by

subtracting the sum of all initial values in the vector from the masked value and then multiplying

the resulting sum with the multiplicative inverse of (𝜌1 + 1). This is mathematically represented as:

𝑥𝑖 =

(
𝑥 ′𝑖 +

𝑚∑︁
𝑗=1

𝑥 𝑗

)
× (𝜌1 + 1)−1.

Subsequently, an affine transformation is applied, utilizing three random variables—two for

addition and one for multiplication—to mask the actual values given in Step 3. After receiving the

minimum value from Alice, Bob needs to retrieve the original value by applying the inverse trans-

formation using subtraction and the multiplicative inverse. Following this, a random permutation

is employed to obfuscate the sequence of values, ensuring that Alice cannot determine whether

the minimum value resulted from substitution, deletion, or insertion costs. Bob only receives the

minimum value and does not require reversing this permutation.

Privacy-preserving Needleman-Wunsch protocol. After the aforementioned operations, in the fol-

lowing, we provide a comprehensive protocol overview by first presenting the essential definitions

and notations that underpin our framework in Table 1. A detailed visual flow of our protocol is

depicted in Figure 6 in the Appendix A. Additionally, the pseudocode for each part of the algorithm

is provided in Appendix F.

Table 1. Definitions of symbols used in the algorithm.

Symbol Definition

𝜅 Security parameter for the Paillier cryptosys-

tem, representing the bit length of the keys.

E𝑝𝑘 (𝑝 ) Encryption of plaintext 𝑝 with public key 𝑝𝑘 .

D𝑠𝑘 (𝑐 ) Decryption of ciphertext 𝑐 with secret key 𝑠𝑘 .

sA Alice’s scanpath vector of size𝑚.

sB Bob’s scanpath vector of size 𝑛.

𝛼 The alphabet vector, e.g., 𝛼 =

[𝐴, 𝐵, . . . , 𝑍, 𝑎,𝑏, . . . , 𝑧 ].
D A matrix of size 𝑛 × |𝛼 | , where 𝐷𝑖,𝑗 denotes

the encrypted distance value between the 𝑖-th

element of sA and the 𝑗-th letter in 𝛼 .

Symbol Definition

kB Vector such that each element 𝑘𝐵 𝑗
represents

the index of 𝑠𝐵 ( 𝑗 ) in the alphabet 𝛼 , where

𝑘𝐵 𝑗
= 𝛼−1 (𝑠𝐵 ( 𝑗 ) ) .

C Candidate vector. Contains indices (𝑖, 𝑗 ) for
elements in 𝑀 pending computation where

dependent values𝑀 (𝑖 − 1, 𝑗 − 1) ,𝑀 (𝑖 − 1, 𝑗 ) ,
and𝑀 (𝑖, 𝑗 − 1) are already computed.

𝑐𝑖𝑛𝑠 Insertion cost.

𝑐𝑑𝑒𝑙 Deletion cost.

⊗ Scalar multiplication with a ciphertext.

⊕ Addition operation for two ciphertexts.
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Firstly, to compute the distance privately, we must set up the cryptographic framework, ensure

secure data sharing, and initialize the requisite variables for the primary protocol.

Setup:

i. Alice generates a secret and public key pair (𝑠𝑘, 𝑝𝑘) using the Paillier cryptosystem with

security parameter 𝜅. Subsequently, Alice shares 𝑝𝑘 with Bob for further cryptographic

computations.

Initialization:

i. Alice constructs the substitution cost matrix D, where each element 𝐷𝑖, 𝑗 represents the

encrypted substitution cost between the 𝑖𝑡ℎ element of her scanpath vector sA and the 𝑗𝑡ℎ

letter in the alphabet 𝛼 . Specifically, 𝐷𝑖, 𝑗 = E𝑝𝑘
(
𝑆 (𝑠𝐴𝑖

, 𝛼 𝑗 )
)
for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ |𝛼 |,

where 𝑆 (𝑠𝐴𝑖
, 𝛼 𝑗 ) denoting the substitution cost between the letters 𝑠𝐴𝑖

and 𝛼 𝑗 . Following this,

Alice sends the encrypted distance matrix D to Bob.

ii. Bob initializes the alignment matrix𝑀 for the Needleman-Wunsch algorithm in encrypted

form:

𝑀0,0 = E𝑝𝑘 (𝑚0,0),
∀𝑖 > 0, 𝑀𝑖,0 = E𝑝𝑘 (𝑚𝑖,0),
∀𝑗 > 0, 𝑀0, 𝑗 = E𝑝𝑘 (𝑚0, 𝑗 ),

where𝑚𝑖,0 =
∑𝑖

𝑘=1
𝑐𝑑𝑒𝑙 and𝑚0, 𝑗 =

∑𝑗

𝑘=1
𝑐𝑖𝑛𝑠 .

Upon completing the setup and initialization phase, Bob starts computing the remaining values

in the alignment matrix𝑀 . To fill𝑀 , each value for the pairs (𝑖, 𝑗), where 𝑖 ∈ [1,𝑚] and 𝑗 ∈ [1, 𝑛],
needs to be computed. The computation is executed in a random order, instead of following the

conventional dynamic programming order, to effectively obscure the current step from Alice.

Candidate Vector Construction: A candidate vector, denoted asC, contains the indices (𝑖, 𝑗) for
the elements in𝑀 that are pending computation and for which the dependent values𝑀 (𝑖 − 1, 𝑗 − 1),
𝑀 (𝑖 − 1, 𝑗), and𝑀 (𝑖, 𝑗 − 1) are already computed. In each iteration, this candidate vector is updated

by checking the dependent values for possible candidates𝑀 (𝑖 + 1, 𝑗 + 1),𝑀 (𝑖 + 1, 𝑗), and𝑀 (𝑖, 𝑗 + 1).
To ensure randomness in the computation, a pair of indices (𝑖, 𝑗) is randomly selected from C in

each step, and the corresponding cell is computed. At the outset, given that the initial conditions of

𝑀 have been established, C contains only the index (1, 1).
We present a step-by-step description of the operations executed within each iteration loop.

Step 1 According to randomly selected indices (𝑖, 𝑗), Bob computes encrypted editing operation

costs as follows:

𝑥1 = 𝑀 (𝑖 − 1, 𝑗 − 1) ⊕ 𝐷 (𝑖, kB [ 𝑗 − 1]),
𝑥2 = 𝑀 (𝑖, 𝑗 − 1) ⊕ E𝑝𝑘 (𝑐𝑖𝑛𝑠 ),
𝑥3 = 𝑀 (𝑖 − 1, 𝑗) ⊕ E𝑝𝑘 (𝑐𝑑𝑒𝑙 ).

After computing these values, Bob aggregates them into a vector, denoted as x = [𝑥1, 𝑥2, 𝑥3].
Step 2 Order Preserving Masking: To introduce uncertainty and securely mask the data from Alice,

Bob randomly selects one of the following two approaches, each with a probability of 0.5:

Option 1. Multiply by a random number that has a multiplicative inverse and let 𝑥 ′ℓ = 𝑥ℓ ⊗ 𝜌1, where

ℓ ∈ {1, 2, 3}.
Option 2. Apply an order-preserving mask introduced in the previous masking process. Bob randomly

selects a value 𝜌1 and ensures that 𝜌1 + 1 has a multiplicative inverse within the defined
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domain. He then computes

𝑥 ′
1
= (𝑥1 ⊗ 𝜌1) ⊕ (−𝑥2) ⊕ (−𝑥3),

𝑥 ′
2
= (𝑥2 ⊗ 𝜌1) ⊕ (−𝑥1) ⊕ (−𝑥3),

𝑥 ′
3
= (𝑥3) ⊗ 𝜌1) ⊕ (−𝑥1) ⊕ (−𝑥2).

Step 3 Affine Transformation: Bob masks x′ values using an affine transformation. He selects a

value 𝜌2, ensuring that 𝜌2 has a multiplicative inverse in the given domain. Additionally, he

randomly selects values 𝛿1 and 𝛿2. Subsequently, he applies the transformation as:

𝑥 ′′ℓ =

(
𝜌2 ⊗

(
𝑥 ′ℓ ⊕ E𝑝𝑘 (𝛿1)

) )
⊕ E𝑝𝑘 (𝛿2), ℓ ∈ {1, 2, 3}

x′′ = [𝑥 ′′
1
, 𝑥 ′′

2
, 𝑥 ′′

3
] .

Step 4 Random Permutation: Bob applies a random permutation order 𝜋 to x′′. He obtains the

permuted vector x′′𝜋 and transmits x′′𝜋 to Alice.

Step 5 Alice Minimum Cost Computation: Alice decrypts the permuted values to determine the small-

est value and then encrypts it as E𝑝𝑘 (𝑥∗), where𝑥∗ = min

(
D𝑠𝑘 (𝑥 ′′𝜋 (1) ),D𝑠𝑘 (𝑥 ′′𝜋 (2) ),D𝑠𝑘 (𝑥 ′′𝜋 (3) )

)
.

Alice will send an entirely different ciphertext due to the randomization in the Paillier cryp-

tosystem encryption. Consequently, when Alice sends the encrypted value to Bob, Bob

cannot discern which value corresponds to the minimum and which operation resulted in

that minimum.

Step 6 Bob Correction Operation: Bob retrieves the value in the encrypted domain, and he first applies

an inverse affine transform and obtains 𝑥 ′
min

as:

𝑥 ′
min

=
(
E𝑝𝑘 (𝑚∗) ⊕ E𝑝𝑘 (−𝛿2)

)
⊗ 𝜌−1

2
⊕ E𝑝𝑘 (−𝛿1). (2)

Then, if he did not apply the order-preserving mask,𝑀 (𝑖, 𝑗) = 𝑥 ′
min
⊗ 𝜌−1

1
; otherwise,𝑀 (𝑖, 𝑗)

is calculated as:

𝑀 (𝑖, 𝑗) =
(
𝑥 ′
min
⊕ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3)−1

)
⊗ (𝜌1 + 1)−1. (3)

All the Paillier encryption scheme operations are detailed in Appendix D. In each computational

iteration, a single value within the matrix is computed. The last computed value, E𝑝𝑘 (𝑀 (𝑚,𝑛)),
corresponds to the similarity score in the Needleman-Wunsch algorithm, indicating the similarity

of scanpaths. To obtain the decrypted result, Bob must transmit this value to Alice. In turn, Alice

employs her secret key to decrypt E𝑝𝑘 (𝑀 (𝑚,𝑛)), yielding the ultimate result denoted as Δ =

D𝑠𝑘 (E𝑝𝑘 (𝑀 (𝑚,𝑛))). Subsequently, Alice conveys the decrypted result back to Bob.

3.3 Security Analysis
In our protocol, Bob receives two types of input from Alice: an encrypted distance matrix represent-

ing Alice’s scanpath and an encrypted minimum element in each iteration. All inputs are encrypted

using the Paillier scheme, ensuring that Bob cannot deduce any details about Alice’s scanpath other

than its length. Alice receives the vector for minimum cost computation in each step, which is

the only kind of input she receives from Bob. To safeguard against potential information leaks

during this transmission, we employed a probabilistic processing strategy and a masking method

involving permutation.

In our protocol, Bob employs a probabilistic processing strategy to hide the current step fromAlice.

In each iteration, he randomly chooses a cell to process from the existing candidates, represented by

C. An example illustration of several steps of this process is provided in Figure 7 in the Appendix B.

The level of randomness in each iteration is associated with the number of candidates, which

reflects the degree of uncertainty. This number of candidates depends on the current step and the
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length of scanpaths. Figure 1 demonstrates the relationship between the dimensions of the matrix

(𝑚 × 𝑛) and the average number of candidates, adding compounded complexity at each step. As

the number of letters in the scanpaths increases, so does the average number of candidates, which

enhances our security level. For illustrative purposes, consider scanpaths of lengths𝑚 = 𝑛 = 20.

On average, 6.8 candidates are observed in each iteration, as shown in Table 1. This results in

approximately (6.8)400 or 21100 different ways to compute the matrix. Also, Figure 2 illustrates

the cumulative sum of the number of candidates in log
2
for each iteration step while processing

a 200 × 200 matrix. By step 46 (𝑖 × 𝑗 ), it reaches 80, implying 2
80
possible combinations, and by

step 65, it hits 2
128

combinations. The 𝑦-axis represents the exponent in the base-2 logarithm. For

instance, at step 10, 000, which may correspond to a matrix of 100 × 100 letters, there are 250000
possible combinations. Consequently, Alice cannot identify the specific matrix cell currently under

computation. This means that she is completely blind to the information on which matrix cell

corresponds to a given sequence of editing costs without adding any computational complexity.

As a result, Alice cannot identify the letter in Bob’s scanpath based on the received values for the

minimum cost computation.

Fig. 1. Relationship between the matrix size (𝑚 ×
𝑛) and the average number of candidate cells per
iteration for the probabilistic Needleman-Wunsch
algorithm.

Fig. 2. Cumulative computational complexity of the
probabilistic selection process, represented by the
sum of the log

2
of the candidate counts per iteration

for each step.

Additionally, we implement masking and permutation to further enhance security. In the masking

process, we first decide at random whether to use order-preserving masking, and we make this

decision with a probability of 0.5. Each option involves a different set of equations and this random

selection strategy results in 2
𝑚×𝑛

different combinations when considering the entire matrix

processing phase. In the order-preserving masking phase given in Equation 3.2, we enhance the

system’s security by introducing a random multiplication factor. Additionally, if Alice knows only

the x′ values but not x and 𝜌1, she has a system of 𝑛 linear equations with 𝑛 + 1 unknowns (the
𝑛 values of x and the value of 𝜌1). Such a system is underdetermined, implying that there is no

unique solution. Multiple combinations of x values and 𝜌1 could yield the same x′ values; thus,
Alice is unable to definitively infer the original values.

In the initial stages of the Needleman-Wunsch algorithm, the pool of candidates might be limited,

increasing the likelihood that Alice could accurately deduce the original 𝑥 values. To address this

vulnerability, which is most pronounced in the early phases of the algorithm, we introduce an

affine transformation in Step 3. This strategy integrates three additional random variables, further

hindering Alice’s ability to reverse-engineer the data successfully. Consequently, Alice is presented

with a system defined by three equations but with six unknowns. This underdetermined scenario

significantly amplifies the complexity of her task in determining the original x values, thereby

markedly boosting the masking robustness of the transformed data. In addition to the strategies

mentioned, we employ a permutation, which introduces a potential of 3! possible combinations
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at each step. Considering the entire Needleman-Wunsch algorithm, this raises the computational

complexity, introducing a challenge magnified by a factor of 6
𝑚×𝑛

.

In summary, our framework ensures the security of Alice’s and Bob’s scanpath data by employing

the Paillier encryption combined with a comprehensive multi-layered approach. At the end of

the Needleman-Wunsch algorithm, Alice and Bob are only informed of their respective scanpath

lengths and the resulting similarity score as intended.

4 IMPLEMENTATION AND EVALUATION
We implemented the scanpath comparison algorithm with Paillier on C++ due to its computational

efficiency [30, 53], using GMP library [33] according to ISO/IEC 18033-6 [38], and we employed

the 𝑔 = 𝑛 + 1 selection given in [20, 21]. We utilized the cryptographically secure random number

generator “/dev/urandom” which sources its randomness from hardware inputs and system events,

ensuring a high degree of unpredictability by extracting entropy from these system activities.

We utilized the Fisher-Yates shuffle algorithm [29] for cryptographically secure permutations.

Simulations were conducted on a Linux machine with an AMD EPYC 7763 64-core Processor. Alice

and Bob communicated via the local host on this machine. We provide our source code publicly

available.
1

In our experimental setup, we represented two distinct entities, namely Alice and Bob. Each of

these parties has its own private scanpath records. For each experiment, Alice and Bob compared

pairs of scanpaths from their respective datasets. To evaluate our method, we conducted tests

using a synthetically generated dataset and three publicly available eye-tracking datasets, including

360em [1], Salient360 [54, 55], and EHTask [37]. In the subsequent section, we provide a concise

overview of each dataset and eye-tracking data encodings.

4.1 Data Encodings and Datasets
String representations of the eye-tracking data are primarily generated using fixations, which

indicate where the gaze remains fixed over a certain amount of time. Eye-tracking datasets often

provide either fixation data or raw gaze information. When such precise fixation points are not

included, we pre-processed the raw data to create a string scanpath sequence following a method-

ology employed by [32]. In the following, we outline the procedure for processing and encoding

the scanpaths for further analysis.

The gaze data is quantized using a 7 × 7 grid over the presented stimulus if raw data is provided.

Then, corresponding symbols (i.e., letters) are assigned. Our alphabet consists of both lowercase

and uppercase letters. There are 52 letters, and 49 of them are used. Any repeated letter sequence

lasting less than 100ms is eliminated, as it is too short to be considered a fixation. The number

of samples denoted as 𝑁 , equivalent to 100ms, varies across datasets due to different sampling

rates. Any sequence with 𝑁 symbols or more is downsized by a factor of 𝑁 but is limited to only

three consecutive characters at most. If the dataset directly provides fixation points, there is no

need for a symbol reduction process. Thus, we applied a 7 × 7 grid and assigned unique letters to

each grid cell. The scanpath is then encoded into strings using this mapping. Subsequently, the

participants are equally distributed between Alice and Bob. Details regarding the scanpaths are

given in Appendix G.

Datasets. In the Salient360 dataset [54, 55], a total of 65 stimuli were observed by 48 partici-

pants. Each 360-degree stimulus was presented for a duration of 25 seconds on a head-mounted

display (HMD). The dataset consists of fixation points, represented by x and y coordinates on the

equirectangular image. Therefore, we mapped the fixations onto a 7 × 7 grid without needing a

1
https://github.com/suleymanozdel/PrivacyPreservingScanpathComparison.git
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pre-processing step. The 360EM dataset, introduced by [1], consists of data from 13 participants. In

this dataset, participants watched 15 360-degree video clips with a resolution of 3840 × 1920. Each
clip was approximately 1 minute in length. Eye-tracking data were collected at a 120 Hz sampling

rate using a HMD. The dataset provided raw gaze data with x and y coordinates; therefore, we

pre-processed the data to obtain a string representation of the scanpaths. In the EHTask dataset [37],

data were collected from 30 participants while viewing 15 VR videos encompassing 360-degree

perspectives. These videos were utilized for free viewing, visual search, saliency estimation, and

object tracking tasks. Each video lasts 150 seconds at a rate of 30 frames per second, leading to

a count of 4500 frames for every video. The dataset captures gaze positions in terms of degrees:

longitude values extend from −180 to +180 degrees, while latitude values vary from −90 to +90
degrees. We pre-processed the raw data to obtain scanpaths using a 7𝑥7 grid in degrees. In addition

to using publicly available datasets, we created a random sequence of letters across various lengths,

as detailed in Table 3. Both Alice and Bob have ten scanpaths of identical length, and with pairwise

comparison, we obtained 100 comparisons for each length. This experiment was intentionally

designed to execute the protocol only for𝑚 = 𝑛 cases, offering a clear and comprehensive overview

of our protocol’s performance beyond publicly available datasets.

4.2 Results
We evaluated our methodology using three publicly available datasets to demonstrate its practicality

and performance. Moreover, we conducted experiments to assess the effectiveness of our approach

across randomly generated scanpaths of varying lengths (i.e., synthetic dataset.). These tests were

performed using four distinct security parameters, denoted as 𝜅: 512, 1024, 2048, and 3072. We

also provide the corresponding security strength for the Paillier cryptosystem, quantified in n-bits,

which denotes the number of attempts required to successfully decrypt the encryption without

authorization. Paillier cryptosystem with a security parameter of 512 offers a baseline level of

security approximately equivalent to 56-bit, according to the National Institute of Standards and

Technology (NIST) [9], while parameters 1024, 2048, and 3072 correspond to security strengths of

80-bit, 112-bit, and 128-bit, respectively.

In our experiments, we executed our algorithm separately for each dataset. Table 2 showcases

the mean and standard deviation of the product of𝑚 × 𝑛 for each dataset, providing a standardized

measure of the dataset size and complexity. Moreover, the table enumerates the computation times

for scanpath comparison under various security parameters, measured in seconds. The computation

time can be represented as 𝑂 (𝑚𝑛𝜅𝛼 ), where 𝛼 represents the computational impact of the security

parameter. Additionally, Figure 3 presents the aggregated results for all datasets, illustrating our

protocol’s computation time as demonstrating that our protocol’s computation time scales as

𝑂 (𝑚𝑛) for a given 𝜅.
The number of individual letter comparisons in each scanpath comparison equals𝑚 × 𝑛; thus,

the computation time is proportional to this product. We achieved significantly low computation

time using security parameters of 512 and 1024. For instance, when the product of𝑚 and 𝑛 exceeds

10
5
, roughly𝑚 = 𝑛 = 315, the computation time for security parameter 1024 takes only 75 minutes.

When the security parameter was increased to 2048, providing 112-bit security, the computation

time increased to 7 hours. It rises to 22 hours with a 3072-bit security parameter.

In addition to the results from the eye-tracking datasets, which demonstrate the real-world

applicability of our protocol, we have also included results from the synthetic dataset described in

Section 4.1. We carried out experiments where𝑚 = 𝑛, maintaining the same alphabet size of 52 as

used with the other datasets. These results are presented to provide a clearer understanding of the

time requirements for the scanpath comparison task.
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Table 2. Scanpath comparison time and𝑚 × 𝑛 prod-
uct for different datasets and security parameters.

Dataset 𝑚 × 𝑛 (mean ± std) 𝜅 SP Comp. (s) (mean ± std)

Salient360 569.4 ± 508.4

512 3.69 ± 3.31
1024 24.9 ± 22.7
2048 149.3 ± 133.6
3072 460.1 ± 391.4

EHTask 201, 333.5 ± 125, 776.8
512 1, 130.1 ± 704.9
1024 7, 744.1 ± 4, 837.8
2048 50, 297.0 ± 3, 1178.4
3072 132, 552.7 ± 85, 561.4

360em

13, 808.4 ± 7, 142.3
512 75.4 ± 38.9
1024 522.9 ± 273.3
2048 3, 404.9 ± 1, 811.2
3072 10, 310.6 ± 5, 575.1 Fig. 3. Scanpath comparison time vs. Letters (𝑚 ×𝑛).

Table 3. Mean and standard deviation of scanpath comparison in seconds.

𝑚 = 𝑛 𝜅 = 512 (56-bit) 𝜅 = 1024 (80-bit) 𝜅 = 2048 (112-bit) 𝜅 = 3072 (128-bit)

8 0.43 ± 0.02 3.04 ± 0.18 22.52 ± 3.83 73.37 ± 1.20
10 0.62 ± 0.03 4.49 ± 0.24 32.79 ± 5.20 108.29 ± 1.81
20 2.27 ± 0.09 16.15 ± 0.69 114.73 ± 7.99 372.95 ± 9.03
50 13.92 ± 0.67 105.08 ± 13.18 688.61 ± 27.69 2.27 × 10

3 ± 87.83
100 58.51 ± 7.64 401.69 ± 30.42 2.62 × 10

3 ± 136.44 8.04 × 10
3 ± 860.09

200 239.96 ± 24.77 1.58 × 10
3 ± 71.86 1.01 × 10

4 ± 1.24 × 10
3

3.18 × 10
4 ± 3.29 × 10

3

300 542.05 ± 36.46 3.39 × 10
3 ± 243.72 2.26 × 10

4 ± 2.72 × 10
3

7.07 × 10
4 ± 6.74 × 10

3

400 951.74 ± 52.60 5.69 × 10
3 ± 490.49 4.01 × 10

4 ± 4.74 × 10
3

1.25 × 10
5 ± 1.06 × 10

4

500 1.49 × 10
3 ± 72.35 9.47 × 10

3 ± 1.03 × 10
3

6.24 × 10
4 ± 7.13 × 10

3
1.96 × 10

5 ± 1.48 × 10
4

1000 5.33 × 10
3 ± 534.42 3.66 × 10

4 ± 4.17 × 10
3

2.46 × 10
5 ± 1.46 × 10

4
7.80 × 10

5 ± 3.31 × 10
5

In Figure 5, we further illustrate the time required for a single letter comparison, which equates to

one iteration in the Needleman-Wunsch algorithm and depends solely on the security parameter. A

single letter computation takes 0.037 seconds with a 1024-bit security parameter. The time required

reaches a maximum of 0.79 seconds with a 3072-bit parameter, corresponding to 128-bit security.

Bob’s computation time also includes communication with Alice and the tasks of decrypting

three numbers, finding the minimum, and encrypting the result. The time required for Alice’s

computation is also detailed in Figure 4. Alice’s computation time approximately accounts for 25%

of the time required for one iteration. Therefore, Bob’s computational load is roughly three times

higher than Alice’s.
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Fig. 4. Min. computation time for edit distance costs
for Alice across different security parameters.
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Fig. 5. Cell computation time for Bob across dif-
ferent security parameters.

Further assessment of our protocol’s communication overhead was performed for𝑚 = 𝑛 = 100

case. The experiments resulted in total data transmissions of 13MB, 26.5MB, 53.2MB, and 79.7MB
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at security levels of 512, 1024, 2048, and 3072 bits, respectively. Approximately two-thirds of the

total data was sent by Bob. The findings highlight the communication efficiency of our protocol

due to the Paillier cryptosystem’s advantage in necessitating smaller ciphertext sizes.

5 DISCUSSION
Our proposed protocol for the private comparison of scanpaths in a two-party setting enables

the processing and acquisition of similarity results without disclosing any information except

the lengths of the scanpaths. It enables collaboration between two different institutions, like

hospitals with eye-tracking data. Distinct from prevailing two-party computation methodologies,

our approach involves a one-time transmission of encrypted substitution costs for Alice’s scanpath.

This strategy facilitates the support of diverse substitution cost definitions and significantly reduces

the communication overhead, requiring only a single round of interaction between the parties per

iteration. Additionally, our probabilistic approach in processing the alignment matrix, diverging

from conventional dynamic programming, enables the concealment of the current operational step,

which is not possible with secret sharing-based methodologies.

We demonstrated the applicability of our protocol by evaluating it on several eye-tracking

datasets, which contain eye-tracking data that can be encoded as strings, regardless of whether the

data is collected frommobile or stationary systems.We further validated our protocol’s utility across

various datasets by analyzing scanpaths of different lengths. Results with equal-length scanpaths

were provided only in the synthetic dataset to simplify understanding, though the protocol does

not require identical-length inputs. Additionally, we utilized a 7 × 7 grid for experimental purposes

to encode eye-tracking data as strings; however, any grid size or object-based encoding (where

letters are assigned to each gaze-targeted object) can be employed. Different grid or encoding

mechanism selections will primarily affect the time required to generate the substitution cost matrix

on Alice’s side due to the change in alphabet size. Still, the impact on the rest of the algorithm will

be negligible. Additionally, the computational demand between Alice and Bob is not symmetric;

Alice’s computational requirements are lower than Bob’s. This asymmetry allows us the flexibility

to assign roles based on the computational capabilities of the parties. Furthermore, the protocol

is characterized by a relatively low necessity for data transmission, obviating the need for high

bandwidth capacities.

Our protocol also exhibits the capability to conform to diverse edit distance computation schemes,

including the Wagner–Fischer algorithm [61], the Smith-Waterman algorithm [59], and the Lev-

enshtein distance [45]. This adaptability makes our protocol suitable for executing fundamental

scanpath comparison works like [14] and [40], which utilize edit distance measures in scanpath

comparison. Additionally, our protocol can privately execute ScanMatch [19], a well-known scan-

path comparison algorithm within the eye-tracking community. The flexibility of our approach

allows for the optimal selection of algorithms for specific tasks across various domains, including

DNA comparison.

One inherent limitation of the Paillier cryptosystem is that ciphertext operations can sometimes

exceed the defined range. Although this range is extensive, as exemplified by a key size of 𝜅 = 1024,

which allows for the encryption of numbers up to 2
1024

, conducting addition and multiplication

operations in the encrypted domain can present significant challenges. This challenge is particularly

noticeable during random addition and multiplication operations. To mitigate these challenges,

implementing constraints in the random generation is crucial to stay within bounds while also

considering potential security vulnerabilities that may arise from this random generation.

Furthermore, another limitation is the absence of a unique method for encoding scanpaths as

string sequences. Various string representation techniques can be employed, each impacting the

length of the scanpaths differently. Some methods, which result in longer scanpaths, can increase
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the time required for comparison. In addition to the issues mentioned earlier, various scanpath

comparison techniques use representations beyond the typical string format. To accommodate

all these methods while preserving privacy, there is a need for a privacy-preserving encoding

approach.

6 CONCLUSION
We proposed a secure computation protocol designed for edit distance algorithms, specifically

focusing on scanpath comparison. Our two-party secure computation protocol significantly mini-

mizes communication costs and is integrated with the Paillier encryption scheme. In future work,

we aim to expand our approach to include a broader range of scanpath comparison methods. This

development will involve creating privacy-preserving encoding techniques beyond the edit distance

algorithm, extending their applicability to other scanpath comparison methods.
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A SEQUENCE DIAGRAM OF A PRIVACY-PRESERVING TWO-PARTY COMPUTATION
PROTOCOL FOR THE NEEDLEMAN-WUNSCH ALGORITHM

Fig. 6. Sequence diagram of a privacy-preserving two-party computation protocol for the Needleman-Wunsch
algorithm.
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B AN EXAMPLE REPRESENTATION OF THE MATRIX PROCESSING METHOD

Fig. 7. An example representation of the Matrix Processing Method, highlighting the cells that could be
chosen in the next step (known as the candidate vector) with orange boxes.
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C PSEUDOCODE OF NEEDLEMAN-WUNSCH ALGORITHM
Below is a pseudocode representation of the Needleman-Wunsch algorithm:

Algorithm 1 Needleman-Wunsch Algorithm with Insertion and Deletion Costs

1: procedure NeedlemanWunsch(𝑠𝑒𝑞1, 𝑠𝑒𝑞2, 𝑆, 𝑐𝑖𝑛𝑠 , 𝑐𝑑𝑒𝑙 )

2: 𝑚 ← length of 𝑠𝑒𝑞1
3: 𝑛 ← length of 𝑠𝑒𝑞2
4: Create a 2D matrix 𝐷𝑃 of size (𝑚 + 1) × (𝑛 + 1)
5: for 𝑖 ← 0 to 𝑛 do
6: 𝐷𝑃 [𝑖] [0] ← 𝑖 · 𝑐𝑑𝑒𝑙 ⊲ Cost of deletion in 𝑠𝑒𝑞1
7: end for
8: for 𝑗 ← 0 to𝑚 do
9: 𝐷𝑃 [0] [ 𝑗] ← 𝑗 · 𝑐𝑖𝑛𝑠 ⊲ Cost of insertion in 𝑠𝑒𝑞2
10: end for
11: for 𝑖 ← 1 to𝑚 do
12: for 𝑗 ← 1 to 𝑛 do
13: 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 ← 𝐷𝑃 [𝑖 − 1] [ 𝑗 − 1] + 𝑆 (𝑠𝑒𝑞1 [𝑖], 𝑠𝑒𝑞2 [ 𝑗]) ⊲ Match/Mismatch cost

14: 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 ← 𝐷𝑃 [𝑖 − 1] [ 𝑗] + 𝑐𝑑𝑒𝑙 ⊲ Cost of deletion in 𝑠𝑒𝑞1
15: 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 ← 𝐷𝑃 [𝑖] [ 𝑗 − 1] + 𝑐𝑖𝑛𝑠 ⊲ Cost of insertion in 𝑠𝑒𝑞2
16: 𝐷𝑃 [𝑖] [ 𝑗] ← min(𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒, 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒, 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒) ⊲ Fill DP matrix

17: end for
18: end for
19: return 𝐷𝑃 [𝑛] [𝑚] ⊲ Final alignment cost

20: end procedure
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D PAILLIER ENCRYPTION SCHEME
The Paillier cryptosystem is a probabilistic asymmetric additively homomorphic encryption scheme

that relies on the composite residuosity class problem. This cryptosystem is particularly notable for

its additive homomorphic properties. The system generates a pair of keys: a public key, typically

denoted as 𝑝𝑘 , and a private key, 𝑠𝑘 . The private key is kept confidential by its owner and is utilized

exclusively for decryption. In contrast, the public key is made available to any party wishing to

encrypt data or perform other permitted operations.

Key Generation Procedure: The key generation process can be summarized as (𝑠𝑘, 𝑝𝑘) =
PaillierKeygen(𝜅). where 𝜅 which is security parameter representing the bit length of the keys. It

encompasses the following steps:

(1) Key Setup:
• Choose two distinct large prime numbers, 𝑝 and 𝑞. For security, these primes should be

chosen randomly and remain undisclosed.

• Derive the modulus, 𝑛, by multiplying the primes: 𝑛 = 𝑝 × 𝑞.
(2) Public Key Generation:
• In the Paillier cryptosystem, select 𝑔 as 𝑛 + 1, where 𝑔 is an element of the multiplicative

group of integers modulo 𝑛2, denoted by Z∗
𝑛2
.

• Construct the public key as 𝑝𝑘 = (𝑛,𝑔).
(3) Private Key Generation:
• Compute 𝜆 as the least common multiple of (𝑝 − 1) and (𝑞 − 1).
• Derive ℎ by raising 𝑔 to the power of 𝜆 modulo 𝑛2: ℎ = 𝑔𝜆 mod 𝑛2.

• Validate that ℎ satisfies the condition where 𝑛 divides the order of 𝑔.

• Identify 𝜇 as the multiplicative inverse of 𝐿(ℎ) modulo 𝑛, where 𝐿(𝑥) is defined as 𝐿(𝑥) =
𝑥−1
𝑛
.

• Formulate the private key as 𝑠𝑘 = (𝜆, 𝜇).
Upon generating the public key 𝑝𝑘 and secret key 𝑠𝑘 , the public key can be openly shared with

other entities. The encryption process solely requires the public key, while the decryption process

necessitates the secret key. These operations can be described as:

(1) Encryption:
• Given a message𝑚 intended for encryption, where 0 ≤ 𝑚 < 𝑛:

• Randomly select an integer 𝑟 from the multiplicative group of integers modulo 𝑛, denoted

as Z∗𝑛 . This random selection ensures the probabilistic nature of the encryption.

• Encrypt𝑚 using the public key 𝑝𝑘 as:

E𝑝𝑘 (𝑚) ≡ 𝑔𝑚 · 𝑟𝑛 (mod 𝑛2)
(2) Decryption:
• For a received ciphertext E𝑝𝑘 (𝑚), the original plaintext𝑚 is decrypted using the secret

key 𝑠𝑘 :

𝑚 ≡ 𝐿(E𝑝𝑘 (𝑚)𝜆 (mod 𝑛2)) · 𝜇 (mod 𝑛)
The Paillier cryptosystem offers several notable properties, enabling arithmetic operations to

be performed in the encrypted domain. These properties ensure that encrypted data remains

confidential while still allowing specific computations. The properties of the Paillier cryptosystem

are described below:

(1) Addition of ciphertexts (⊕ operator): Given two encrypted numbers E𝑝𝑘 (𝑎) and E𝑝𝑘 (𝑏),
their encrypted sum using the ⊕ operator is expressed as:

E𝑝𝑘 (𝑎) ⊕ E𝑝𝑘 (𝑏) = E𝑝𝑘 (𝑎) × E𝑝𝑘 (𝑏) (4)
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And its decrypted form results in:

D𝑠𝑘 (E𝑝𝑘 (𝑎) ⊕ E𝑝𝑘 (𝑏)) = 𝑎 + 𝑏 (5)

(2) Scalar multiplication (⊗ operator): For an encrypted number E𝑝𝑘 (𝑎) and a scalar 𝑘 , the

encrypted product, when using the ⊗ operator, is given by:

E𝑝𝑘 (𝑎) ⊗ 𝑘 = E𝑝𝑘 (𝑎)𝑘 (6)

Decrypting this expression yields:

D𝑠𝑘 (E𝑝𝑘 (𝑎) ⊗ 𝑘) = 𝑘 · 𝑎 (7)

By leveraging the homomorphic properties of the Paillier cryptosystem, along with the concept

of additive and multiplicative inverses, a variety of arithmetic operations such as subtraction and

division can be executed directly on ciphertexts, preserving the confidentiality of the data.

(3) Subtraction of Encrypted Numbers: Given two encrypted numbers E𝑝𝑘 (𝑎) and E𝑝𝑘 (𝑏),
the subtraction operation in the encrypted domain is defined using the additive inverse of 𝑏.

Let E𝑝𝑘 (−𝑏) be the encryption of the additive inverse of 𝑏. The encrypted difference can be

computed as:

E𝑝𝑘 (𝑎) ⊕ E𝑝𝑘 (−𝑏) = E𝑝𝑘 (𝑎 − 𝑏) (8)

This implies that the decryption of the above result yields 𝑎 − 𝑏.
(4) Scalar Division on Encrypted Data: Given an encrypted number E𝑝𝑘 (𝑎) and a scalar 𝑘 ,

the scalar division in the encrypted domain is defined using the multiplicative inverse of 𝑘

modulo 𝑛. Let 𝑘−1 denote the multiplicative inverse of 𝑘 such that 𝑘 × 𝑘−1 ≡ 1 mod 𝑛. The

encrypted quotient is then:

E𝑝𝑘 (𝑎) ⊗ 𝑘−1 mod 𝑛 = E𝑝𝑘
(𝑎
𝑘

)
(9)

This implies that decrypting the result will give
𝑎
𝑘
.
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E ORDER PRESERVING MASKING PROOF.
Proposition:
Let x be a vector with elements 𝑥𝑖 and 𝑥 𝑗 such that 𝑖 ≠ 𝑗 . If 𝑥𝑖 < 𝑥 𝑗 and 𝜌1 ≥ 1, then 𝑥 ′𝑖 < 𝑥 ′𝑗 ,

where:

𝑥 ′𝑖 = 𝜌1𝑥𝑖 −
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑥𝑘 (10)

𝑥 ′𝑗 = 𝜌1𝑥 𝑗 −
𝑛∑︁

𝑘=1
𝑘≠𝑗

𝑥𝑘 (11)

Proof:
Using the definitions from Equations (10) and (11), we can express 𝑥 ′𝑖 and 𝑥

′
𝑗 as:

𝑥 ′𝑖 = 𝜌1𝑥𝑖 − (𝑥 𝑗 +
𝑛∑︁

𝑘=1
𝑘≠𝑖,𝑘≠𝑗

𝑥𝑘 ) (12)

𝑥 ′𝑗 = 𝜌1𝑥 𝑗 − (𝑥𝑖 +
𝑛∑︁

𝑘=1
𝑘≠𝑖,𝑘≠𝑗

𝑥𝑘 ) (13)

Computing the difference between 𝑥 ′𝑖 and 𝑥
′
𝑗 :

𝑥 ′𝑖 − 𝑥 ′𝑗 = (𝜌1 + 1) (𝑥𝑖 − 𝑥 𝑗 ) (14)

Given 𝑥𝑖 < 𝑥 𝑗 , we have:

𝑥𝑖 − 𝑥 𝑗 < 0 (15)

Multiplying both sides of Equation (15) by 𝜌1 + 1 (which is positive due to 𝜌1 ≥ 1):

(𝜌1 + 1) (𝑥𝑖 − 𝑥 𝑗 ) < 0

=⇒ 𝑥 ′𝑖 − 𝑥 ′𝑗 < 0

=⇒ 𝑥 ′𝑖 < 𝑥 ′𝑗 (16)

From Equation (16), we conclude that if 𝑥𝑖 < 𝑥 𝑗 and 𝜌1 ≥ 1, then 𝑥 ′𝑖 < 𝑥 ′𝑗 .
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F PSEUDOCODE OF PRIVACY PRESERVING SCANPATH COMPARISON PROTOCOL

Algorithm 2 SecureEditDistance

1: function SecureEditDistance(sA: Array, sB: Array, 𝜶 : Array: Int, 𝑐𝑖𝑛𝑠 : Int, 𝑐𝑑𝑒𝑙 : Int)

2: Setup: Key Generation and Distribution
3: (𝑠𝑘, 𝑝𝑘) ← PaillierKeygen() ⊲ Alice

4: SEND 𝑝𝑘 TO Bob ⊲ Alice

5: Alice: SEND 𝑝𝑘 TO Bob

6: Initialization
7: D← InitializeMatrix(sA,𝜶 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡, 𝑝𝑘) ⊲ Alice

8: SEND D TO Bob ⊲ Alice

9: M← InitializeMatrix(sA, sB, 𝑐𝑑𝑒𝑙 , 𝑐𝑖𝑛𝑠 , 𝑝𝑘) ⊲ Bob

10: Edit Distance Calculation
11: candidates← set of pairs ⊲ Bob

12: candidates.insert({1, 1}) ⊲ Bob

13: while candidates ≠ ∅ do
14: Local calculations:
15: 𝑥1 ← M(𝑖 − 1, 𝑗 − 1) ⊕ D(𝑖, 𝛼−1 (sB [ 𝑗 − 1])) ⊲ Bob

16: 𝑥2 ← M(𝑖, 𝑗 − 1) ⊕ Encrypt(𝑝𝑘, 𝑐𝑖𝑛𝑠 ) ⊲ Bob

17: 𝑥3 ← M(𝑖 − 1, 𝑗) ⊕ Encrypt(𝑝𝑘, 𝑐𝑑𝑒𝑙 ) ⊲ Bob

18: if Random() < 0.5 then
19: 𝑥 ′

1
, 𝑥 ′

2
, 𝑥 ′

3
= ApplyOrderPreservingMasking(𝑥1, 𝑥2, 𝑥3) ⊲ Bob

20: else
21: 𝑥 ′

1
= 𝑥1, 𝑥

′
2
= 𝑥2, 𝑥

′
3
= 𝑥3 ⊲ Bob

22: end if
23: 𝑥 ′′

1
, 𝑥 ′′

2
, 𝑥 ′′

3
= ApplyAffineTransformation(𝑥 ′

1
, 𝑥 ′

2
, 𝑥 ′

3
) ⊲ Bob

24: x′′𝜋 = ApplyPermutation(𝑥 ′′
1
, 𝑥 ′′

2
, 𝑥 ′′

3
) ⊲ Bob

25: SEND x′′𝜋 TO Alice ⊲ Bob

26: Alice’s Processing Step
27: 𝑚∗ ← Min(Decrypt(𝑠𝑘, x′′𝜋 )) ⊲ Alice

28: SEND𝑚∗ TO Bob ⊲ Alice

29: Bob’s Reception and Adjustment
30: M𝑖 𝑗 ← ApplyCorrection(𝑚∗, 𝑥1, 𝑥2, 𝑥3, 𝜌1, 𝜌2, 𝛿1, 𝛿2) ⊲ Bob

31: end while
32: Final Result Computation and Transmission
33: SEND Encrypt(𝑝𝑘,M(len(sA), len(sB))) TO Alice ⊲ Bob

34: NW Distance← Decrypt(𝑠𝑘, Encrypt(𝑝𝑘,M(len(sA), len(sB)))) ⊲ Alice

35: SEND NW Distance TO Bob ⊲ Alice

36: return NW Distance

37: end function
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Algorithm 3Matrix Initialization Using Distances

1: function InitializeMatrix(𝑠𝐴, 𝛼, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡, 𝑝𝑘)

2: 𝐷 ← matrix of size |𝑠𝐴 | × |𝛼 |
3: for each element 𝑠𝐴𝑖 in 𝑠𝐴 do
4: for each letter 𝛼 𝑗 in 𝛼 do
5: if some condition for absolute subtraction then ⊲ You can specify a condition if

needed

6: 𝑑𝑖 𝑗 ← |𝑠𝐴𝑖 − 𝛼 𝑗 | ⊲ Absolute subtraction

7: else
8: 𝑑𝑖 𝑗 ← 𝑆 (𝑠𝐴𝑖 , 𝛼 𝑗 ) ⊲ Using predefined distances

9: end if
10: 𝐷 [𝑖] [ 𝑗] ← Encrypt(𝑝𝑘, 𝑑𝑖 𝑗 )
11: end for
12: end for
13: return 𝐷

14: end function

Algorithm 4Matrix Initialization for Sequence Alignment

1: function InitializeMatrix(𝑠𝐴, 𝑠𝐵, 𝑐𝑑𝑒𝑙 , 𝑐𝑖𝑛𝑠 , 𝑝𝑘)

2: 𝑀 ← matrix of size ( |𝑠𝐴 | + 1) × (|𝑠𝐵 | + 1)
3: for 𝑖 = 0 to |𝑠𝐴 | do
4: 𝑚𝑖0 ← 𝑖 × 𝑐𝑑𝑒𝑙
5: 𝑀 [𝑖] [0] ← Encrypt(𝑝𝑘,𝑚𝑖0)
6: end for
7: for 𝑗 = 0 to |𝑠𝐵 | do
8: 𝑚0𝑗 ← 𝑗 × 𝑐𝑖𝑛𝑠
9: 𝑀 [0] [ 𝑗] ← Encrypt(𝑝𝑘,𝑚0𝑗 )
10: end for
11: return𝑀

12: end function

Algorithm 5 SecureEditDistance

1: function ApplyOrderPreservingMasking(𝑥1, 𝑥2, 𝑥3)

2: 𝜌1 ← RandomValue()

3: 𝑥 ′
1
← (𝑥1 ⊗ 𝜌1) ⊕ (−𝑥2) ⊕ (−𝑥3)

4: 𝑥 ′
2
← (𝑥2 ⊗ 𝜌1) ⊕ (−𝑥1) ⊕ (−𝑥3)

5: 𝑥 ′
3
← (𝑥3) ⊗ 𝜌1) ⊕ (−𝑥1) ⊕ (−𝑥2)

6: return 𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3

7: end function
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Algorithm 6 SecureEditDistance

1: function ApplyAffineTransformation(𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
)

2: 𝜌2 ← RandomValue()

3: 𝛿1, 𝛿2 ← RandomValues()

4: 𝑥 ′′
1
← (𝑥 ′

1
⊕ 𝜌2) ⊕ Encrypt(𝑝𝑘, 𝛿1) ⊕ Encrypt(𝑝𝑘, 𝛿2)

5: 𝑥 ′′
2
← (𝑥 ′

2
⊕ 𝜌2) ⊕ Encrypt(𝑝𝑘, 𝛿1) ⊕ Encrypt(𝑝𝑘, 𝛿2)

6: 𝑥 ′′
3
← (𝑥 ′

3
⊕ 𝜌2) ⊕ Encrypt(𝑝𝑘, 𝛿1) ⊕ Encrypt(𝑝𝑘, 𝛿2)

7: return 𝑥 ′′
1
, 𝑥 ′′

2
, 𝑥 ′′

3

8: end function

Algorithm 7 SecureEditDistance

1: function ApplyPermutation(𝑥 ′′
1
, 𝑥 ′′

2
, 𝑥 ′′

3
)

2: 𝜋 ← RandomPermutation()

3: 𝑥 ′′𝜋 ← [𝑥 ′′𝜋 (1) , 𝑥
′′
𝜋 (2) , 𝑥

′′
𝜋 (3) ]

4: return 𝑥 ′′𝜋
5: end function

Algorithm 8 Bob Correction Operation

1: function BobCorrectionOperation(E𝑝𝑘 (𝑚∗), 𝛿1, 𝛿2, 𝜌1, 𝜌2, 𝑥1, 𝑥2, 𝑥3, maskApplied)
2: // Apply inverse affine transform to obtain 𝑥 ′

min

3: 𝑥 ′
min
← (E𝑝𝑘 (𝑚∗) ⊕ E𝑝𝑘 (−𝛿2)) ⊗ 𝜌−1

2
⊕ E𝑝𝑘 (−𝛿1)

4:

5: if not maskApplied then
6: 𝑀 (𝑖, 𝑗) ← 𝑥 ′

min

7: else
8: 𝑀 (𝑖, 𝑗) ← 𝑥 ′

min
⊕ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3) ⊗ (𝜌1 + 1)−1

9: end if
10: return𝑀 (𝑖, 𝑗)
11: end function
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G DATASET DETAILS

Table 4. Dataset details for Alice and Bob.

Salient360 EHTask 360em

Alice

Avg. # of Scanpaths 50.66 3 13.71

Mean 23.743 416.156 118.948

Min 2.00 95.00 26.00

Max 63.00 849.00 210.00

Std Dev 13.040 197.538 39.342

Bob

Avg. # of Scanpaths 49.37 3 14.67

Mean 23.128 479.978 116.648

Min 2.00 150.00 18.00

Max 66.00 825.00 192.00

Std Dev 12.797 173.409 44.663

Summary 𝑚 × 𝑛 569.4 201333.459 13808.419

# Total Comparisons 70796 135 1320
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